

Yulia Furletova (JLAB) on behalf of GEM-TRD/T working group

GEM-TRD/T TEAM:

- Jefferson Lab:
 - ✓ Howard Fenker
 - ✓ Yulia Furletova
 - ✓ Sergey Furletov
 - ✓ Lubomir Pentchev
 - ✓ Beni Zihlmann
 - ✓ Chris Stanislav
 - ✓ Fernando Barbosa
- University of Virginia
 - ✓ Kondo Gnanvo
 - ✓ Nilanga K. Liyanage
- > Temple University
 - ✓ Matt Posik
 - ✓ Bernd Surrow

Electron identification (e/hadron separation)

GPD and

Coherent Exclusive Diffraction

(saturation)

Br
$$(J/\psi - e + e -) \sim 6\%$$

Br
$$(J/\psi - \mu + \mu -) \sim 6\%$$

0 coherent - no saturation (bSat)
0 coherent - saturation (bSat)
10 coherent - saturation (bSat)
1

Heavy quark tagging

Br (B
$$^{\pm}$$
->e+ ν +X_C) ~10%

e $x \mid Q^{2}$ h = c, b A G(x')

Exotic spectroscopy (pentaquarks, tetraquarks, XYZ)

Other BSM physics

Electron/hadron separation

> The main detector for e/hadron separation is a Calorimeter. Also dE/dx in tracking detectors, as well as Cherenkov detectors could be used in the limited momentum range.

> At EIC (hadron end-cap) e/h rejection factor > 500-1000 is required.

> TRD offers high e/h rejection for electrons in 1-100 GeV range

- Hadron end-cap

between dRICH and EMCAL
 (extra tracking point)

TRD/T

4

GEM as Transition Radiation detector and tracker for EIC

- High resolution tracker.
- > Low material budget detector
- How to convert GEM tracker to TRD:
 - ✓ Change gas mixture from Argon to Xenon

 (TRD uses a heavy gas for efficient absorption of X-rays)
 - ✓ Increase drift region up to 2-3 cm (for the same reason).
 - ✓ Add a radiator in the front of each chamber (radiator thickness ~5-20cm)
 - ✓ Number of layers depends on needs: Single layer could provide e/pi rejection at level of 10 with a reasonable electron efficiency.

Was planned to do within FY19:

- ☐ Continue Monte Carlo simulation and data analysis (main recommendation from eRD committee)
- ☐ Test Module with different (%) gas mixtures: gas system is ready. Test gas-mixture for contaminations.
- ☐ Test Cr module: new prototype is ready and under a test at UVA
- □ Collaboration with tracking and streaming readout consortia
- □ Planning to present our results at conferences and prepare a publication

GEANT4 standalone: electron and pion comparison

Parameters:

- ✓ Detector Gas Volume (Drift region): 1 4 cm
- ✓ Radiator Volume (R): 3-10 cm
- √ "Dead material": needs to be minimized (source of inefficiency)!
 - ✓ entrance window (Mylar $50\mu m$)
 - ✓ cathode material(Al, Cu, Cr)
 - ✓ gap (Xe filled) $400\mu m$ (need dedicated field-cage)

√ Gas mixture: Xe/CO₂, Ar/CO₂

Geant-for-EIC (g4e) as a tools for integration of sub-detectors into a global detector system.

- Almost all sub-detectors within eRD have their own standalone GEANT4 simulation (detector geometry descriptions, material, sensitive detector description, digitization, etc... as well as a reconstruction code....
- ➤ A lot of discussions with EICUG and eRD20 (software consortia) about a common tools for EIC. See my more detailed talk about g4e at EIC Ad-hoc Meeting on detector and physics simulations) https://indico.bnl.gov/event/6336/
- Historically started as a standalone simulation for vertex detector for EIC (for open charm search), and then extended by including other subdetectors (straw -tube tracker, EMCAL, beam elements, etc....)
- > And now a layer of TRD has been added.
- > Looking forward to collaborate with software consortia (EICUG, eRD20)

GEANT4: integration of TRD into a global

detector setup (g4e)

GEM-TRD is integrated into "g4e" version of JLEIC detector

Detector description/construction

```
Configuration structure:
```

```
include
                                                 #include "JLeicDetectorConfig.hh"
                                          17
design
                                          18
                                                 struct ci TRD Config {
                                          19
                                                 // define here Global volume parameters
 ▶ ■ cb_CTD
                                          20
                                                     double RIn = 20 * cm;
 ▶ ■ cb_DIRC
                                                     double ROut = 200 * cm;
                                                     double ThicknessZ = 40 * cm;
 cb_EMCAL
                                                     double PosZ:
 ▶ ■ cb_HCAL
                                          24
                                                     G4double fRadZ;
  ▶ ■ cb_Solenoid
 26
                                                     double fGasGap = 0.600 * mm; // for ZEUS 300-publication
                                                     double fRadThick = NAN;
      cb_VTX.hh
                                          28
                                                     int fFoilNumber = NAN;
 ▶ ■ ce_EMCAL
                                          29
 ▶ ■ ce_GEM
                                          30
                                                     double det RIn = 50 * cm;
  ▶ ■ ce_MRICH
                                                     double det ROut = 100 * cm;
                                                     double det ThicknessZ = 2.5 * cm;
  ▶ Image ci_DRICH
                                                     double det PosZ;
  ▶ Im ci_EMCAL
                                          34
                                                     G4double fDetThickness;
 ▶ Image ci_GEM
                                                     G4double fDetLength;
 ▶ ■ ci_HCAL
                                          36
                                                     double fAbsorberThickness = 0.050 * mm;

▼ Image: ci_TRD
                                          38
                                                     double fAbsorberRadius = 100. * mm;
     aci_TRD.hh
                                          39
                                                     double fAbsorberZ = 136. * cm;
 ▶ ■ ffe_CPOL
                                          40
                                                     double fDetGap = 0.01 * mm;
                                          41
                                                     int fModuleNumber = 1;
 ▶ ■ ffe_LUMI
                                          42
                                                     G4Material *fRadiatorMat:
                                                                                        // pointer to the mixed TR radiator material
  ▶ ■ ffi_ZDC
                                          43
                                                     G4Material *det Material;
 fi_EMCAL
                                          44
  ▶ Image fi_TRKD1
                                          45
                                                     G4double fRadThickness = 0.020 * mm; // 16 um // ZEUS NIMA 323 (1992) 135-139, D=20um, dens.= 0.1 g/cm3
```

GEANT4: integration of TRD into a global detector setup (94e) TR process is included

TR-radiator and gas absorber are described

```
G4double fractionFoil = foilDensity * foilGasRatio / totDensity;
G4double fractionGas = gasDensity * (1.0 - foilGasRatio) / totDensity;
G4Material *radiatorMat0 = new G4Material("radiatorMat0", totDensity, 2);
radiatorMat0->AddMaterial(CH2, fractionFoil);
radiatorMat0->AddMaterial(Air, fractionGas);
G4double NewDensity = 0.083 * (g / cm3);
G4Material *radiatorMat = new G4Material("radiatorMat", NewDensity, 1);
radiatorMat->AddMaterial(radiatorMat0, 1.);
G4cout << "new Rad with totDensity = " << NewDensity / (g / cm3) << " g/cm3 " << G4endl;
G4double XTR density = radiatorMat->GetDensity();
G4cout << "Read back Rad totDensity = " << XTR density / (g / cm3) << " g/cm3 " << G4endl;
// default materials of the detector and TR radiator
cfg.fRadiatorMat = radiatorMat;
fFoilMat = CH2; // Kapton; // Mylar ; // Li ; // CH2 ;
fGasMat = Air; // CO2; // He; //
 ------material -----
cfq.fRadThick = 10. * cm - cfq.fGasGap + cfq.fDetGap;
cfg.fFoilNumber = cfg.fRadThick / (cfg.fRadThickness + cfg.fGasGap);
printf("fFoilNumber1=%d \n", cfg.fFoilNumber);
cfg.fRadZ = -cfg.ThicknessZ / 2 + cfg.fRadThick / 2 + 2 * cm;
foilGasRatio = cfg.fRadThickness / (cfg.fRadThickness + cfg.fGasGap);
fSolidRadiator = new G4Tubs("ci_TRD_Radiator_Solid", 50 * cm, 100 * cm, 0.5 * cfg.fRadThick, 0., 360
fLogicRadiator = new G4LogicalVolume(fSolidRadiator, cfg.fRadiatorMat,
                                    "ci TRD Radiator Logic");
attr ci TRD rad = new G4VisAttributes(G4Color(0.8, 0.7, 0.6, 0.8));
attr ci TRD rad->SetLineWidth(1);
attr ci TRD rad->SetForceSolid(true);
fLogicRadiator->SetVisAttributes(attr_ci_TRD_rad);
fPhysicsRadiator = new G4PVPlacement(0,
                                    G4ThreeVector(0, 0, cfg.fRadZ),
                                     "ci_TRD_Radiator_Phys", fLogicRadiator,
                                    Phys, false, 0);
```

TR process is included into a physics.list.

```
// G4cout<<"fMinElectronEnergy = "<<fMinElectronEnergy/keV<<" keV"<<G4endl;
// G4cout<<"fMinGammaEnergy = "<<fMinGammaEnergy/keV<<" keV"<<G4endl;</pre>
G4cout<<"XTR model = "<<fXTRModel<<G4endl;</pre>
std::cout<<"XTR model = "<<fXTRModel<<G4endl:</pre>
const G4RegionStore* theRegionStore = G4RegionStore::GetInstance();
G4Region* gas = theRegionStore->GetRegion("XTRdEdxDetector");
G4VXTRenergyLoss* processXTR = 0;
if(TXTRModel == "gammaR" )
  // G4GammaXTRadiator*
  processXTR = new G4GammaXTRadiator(pDet->GetLogicalRadiator)
                  100., //-- AlphaPlate 100
                                pDet->GetFoilMaterial(),
                                pDet->GetGasMaterial(),
                                pDet->GetFoilThick(),
                                pDet->GetGasThick(),
                                 pDet->GetFoilNumber(),
                                 "GammaXTRadiator");
  se if(fXTRModel == "gammaM" )
  // G4XTRGammaRadModel*
   socessXTR = new G4XTRGammaRadModel(pDet->GetLogicalRadiator()
                                pDet->GetFoilMaterial(),
 else if (particleName == "e-")
    // Construct processes for electron
    theeminusStepCut = new JLeicStepCut();
    theeminusStepCut->SetMaxStep(MaxChargedStep);
    //theeminusStepCut->SetMaxStep(100*um) ;
    G4eIonisation* eioni = new G4eIonisation();
    G4PAIModel*
                        pai = new G4PAIModel(particle, "PAIModel");
    eioni->AddEmModel(0,pai,pai,gas);
    pmanager->AddProcess(new G4eMultipleScattering, -1,1,1);
    //pmanager->AddProcess(new G4eMultipleScattering,-1,-1,-1);
    pmanager->AddProcess(eioni,-1,2,2);
    pmanager->AddProcess(new G4eBremsstrahlung,-1,3,3);
    pmanager->AddDiscreteProcess(processXTR);
    pmanager->AddDiscreteProcess(new G4SynchrotronRadiation);
    pmanager->AddDiscreteProcess(theeminusStepCut);
```

Yulia Furletova'

GEM-TRD/T prototype test setup

> A standard Cu-GEM-TRD/T prototype is currently under tests

> A new Cr-GEM-TRD/T

- > 3-6 GeV electrons in Hall-D from pair spectrometer
- > In parallel with Hall-D MW-TRD (FDC) system
- ightharpoonup covered $\frac{1}{2}$ of the sensitive area with radiator $y_{\text{ulia Furletova}}$

Gas system

- Without a re-circulation and a purification system (too early stage of R&D)
- Mixing system to mix custom gas concentrations
- Flow controller, CO₂ controller
 - > Assembled at Temple U.
 - > Delivered to JLAB (hall-D) in Jan 2019

> waiting for a final approval for safety and operation under pressure (all necessary parts are ordered, expecting approval in Sept)

Gas quality monitoring system

We purchased gas analyzer to begin quantifying and monitoring contaminations and to measure the concentrations of the Xe and CO_2 gasses.

-> split a cost with Hall-D: our contribution \$7k (40%) to extend up to Xe

Helium gas as carrier

Yulia Furletova

Tracking: preparation for a spring test setup

Readout electronics

- ✓ FlashADC 125MHz setup shows excellent performance!
- ✓ Pre-amplefiers: undershooting, no base-line restorer !!!
- ✓ Collaboration with eRD23 (streaming readout) to find the best solution for GEM-TRD operation in a streaming mode

Readout electronics: undershooting

Undershooting creates a visible area of inefficiency (or signal losses)

Fernando Barbosa and Chris Stanislav

New interface board For GEM-TRD

- compatible with JLAB Flash-ADC 125MHz system
- Each board holds 10 preamplifiers, each preamplifier connects to 24 GEM strips resulting on a readout of 240 GEM strips per each readout board or X/Y coordinate.
- A pre-amplifier has GAS-II ASIC chips (3 chips per each preamplifier card) and provides 2.6 mV/fC amplification. A preamplifier has a peaking time of 10 ns. It consumes 50 mWatt/channel and has a noise <0.3 fC. The dynamic range of preamplifiers (where it is linear) is about 200 fC.
 - Covers up to 2.4 (32) μs of a drift time.

External tracking

- ✓ External GEM tracker (contribution of UVa) has been successfully integrated into GEM-TRD setup
- ✓ APV25 with SRS-readout

Figure 5. Response of Shaper (Hspice simulation).

Electronics:

	MHz	ns/bin	Peaki ng time	Range	Channels/ch ip cost	ADC bits	Shaper
FlashADC125	125	8	30ns	1μs or stream	\$50/channel	12bit	External preamps (GAS-II): -Undershooting -No baseline restorer
APV25	40	25	50ns	625ns	128 chan/chip		Analog output (no digitalization)
DREAM (CLAS12)	40	25	50ns		64chan/chip		Analog output (no digitalization)
VMM3 (ATLAS)	4	250	25- 200ns		64chan/chip	10bit	L0 or continuous
SAMPA (ALICE)	10-20	100-50	160ns	Stream 3.2Gbit/s	32chan/chip 30\$/chip 1\$/channel	10bit	500ns- return to baseline Baseline restorer, DSP (zero- suppression, thr)

HV problems during the run

During the data tacking we had a problem with powering all 3 modules (GEMTRD and 2 standard GEM trackers):

After few uncontrolled HV jumps occurred, we were not able to operate GEMTRD module.

After removing it from the testbeam and testing it with a cosmics at Uva, module shows no damage or any misbehavior.

Moving currently to a standard NIM crate (used small one) and new HV power-supply CAEN (N1470ET 4 channels 8kV/3mA): expected delivery Sep 20.

GEMTRD tracking

Example of a single track seen at GEM-TRD (3D track segments in triple –GEM detector acting in a μ TPC mode)

GEANT4: electron and pion comparison

Soft TR-photons:

- > absorbs near entrance window, therefore have large drift time
- sensitive to dead volumes, like Xegap, cathode material.
- Increase of radiator thickness does not lead to increase of number of soft-photons (radiator selfabsorption)

Hard TR-photons:

- Depending on energy of TR-photons, could escape detection (depends on detection length)
- > Increase of radiator leads to increase of hard TR-spectra.

Separation/Identification of TR-clusters and dE/dx clusters

GEANT4: electron and pion comparison

Yulia Furletova

better.

Charge as a function of drift distance

Fleece radiator:

Random oriented in 2D

Polypropylene fibers ($20\mu m$)

Regular foils:

~200 polypropylene foils (~13 μ m thick) with spacers (~180 μ m) made from nylon net

30 20 10 0 20 40 60 80 100 120 140 drift time, 8ns samples

Fleece

radiator

no radiator

≥10⁶

A ⊃.60

charge, 7

60

50

40

Signals from GEMTRD using FlashADC125

Machine learning technique

Upto 20 variables were used as input for likelihood and artificial neural network (ANN) programs, such as JETNET or ROOT-based (Multi-layer Perceptron).

We compared cluster search method and integrated charge within a bin (drift slice).

Multilayer perceptron output for a single module (DATA sample

propagation for 3 modules (bottom) for real data sample

e/π rejection

Tacking into account a limited space between dRICH and EMCAL, a single module of ~15-16 could be achieved with a single module (20cm radiator and 2.5cm gas).

To Do

1) To measure a real e/π rejection factor we need a pion beam!!! (Fermilab, CERN testbeams have both e and hadron beams)

<u>Problem:</u> we do not have our own readout electronics (borrowed from JLAB Hall-D)

Solution (1): use pions from $\rho-meson$ decays (real GlueX physics!) There will be a commissioning run in November for DIRC at Glue-X for 2 weeks.

Our proposal is

- > to install GEM-TRD setup in front or behind DIRC detector (need mechanical support)
- > Integrate GEM-TRD into GlueX Data-acquisition data processing,
- Integrate GEM-TRD into post-processing (analysis)

<u>Solution (2):</u> use Fermilab or CERN testbeam, need a financial support for R/O, have a joint test-beam with EMCAL (eRD1) to estimate a Global PID (e/π) performance

To Do

2) Finish gas installation of a gas mixing system as well as gas analyzer to perform gas-HV scan and to find an optimal mixture and HV settings for TRD operation.

3) Radiators

HERMES and ZEUS fleece radiator are not in production anymore (experts and manufactures has been contacted)

ATLAS-spacers also not available (meeting with ATLAS-TRD/T experts in February)

Have to start searching for a new TRD radiators (or manufactures)

Use the current setup to validate a performance of new TRD radiators.

To Do

4) Streaming readout for GEM-TRD operation.

Our project has been recognized and supported by Hall-D JLAB. We got additional support for development of readout chain, including an implementation of Machine Learning on FPGA for online data processing and data reduction. Planning to perform in FY20.

Budget

Table 2: Temple University-Gas System FY20 request.

_	Request	-20%	-40%
Gas supplies	\$3,000	\$2,000	\$1000
Travel	\$3,000	\$2,000	\$2,000
Overhead (58.5%)	\$3,510	\$2,340	\$1,755
Total	\$9,510	\$6,340	\$4,755

The table 3 below summarizes the Jefferson Lab budget request for FY20.

Table 3: JLAB: Xe-gas and safety FY20 request.

	Request	-20%	-40%
Gas safety	\$4,000	\$2,000	\$2,000
Xe Gas	\$15,000	\$ 15,000	\$ 8,000
Travel	\$5,000	\$4,000	\$3,000
Overhead (ca 12%)	\$3,010	\$2,550	\$ 1,696
Total	\$27,010	\$23,550	\$14,696

The table 5 below summarizes the University of Virginia budget request for FY20.

Table 4: **UVA prototyping** FY20 request.

1 1 0 1				
	Request	-20%	-40%	
GEM-TRD with dedicated field cage	\$6,000	\$5,000	\$4,000	
Repair parts for prototype	\$4,000	\$3,000	\$2,000	
Travel	\$5,000	\$4,000	\$3,000	
Overhead (61.5%)	\$3,075	\$2,460	\$1,855	
Total	\$18,075	\$ 14,460	\$10,845	

This budget does not include items for R/O electronics and travel to Fermilab or CERN testbeam

Budget

Table 2: Temple University-Gas System FY20 request.

	Request	-20%	-40%
	-	, ,	
Gas supplies	\$3,000	\$2,000	\$1000
Travel	\$3,000	\$2,000	\$2,000
0 1 1/-0-04	Φα = 4 α	A 2 4 2	A

Table 5: A total eRD22 FY20 request.

	Request	-20%	-40%
JLAB	\$27,010	\$23,550	\$14,696
UVA	\$18,075	\$ 14,460	\$ 10,845
Temple U	\$9,510	\$ 6,340	\$ 4,755
Total	\$54,595	\$ 44,350	\$30,296

Table 4: **UVA prototyping** FY20 request.

	Request	-20%	-40%
GEM-TRD with dedicated field cage	\$6,000	\$5,000	\$4,000
Repair parts for prototype	\$4,000	\$3,000	\$2,000
Travel	\$5,000	\$4,000	\$3,000
Overhead (61.5%)	\$3,075	\$2,460	\$1,855
Total	\$18,075	\$ 14,460	\$10,845

This budget does not include items for R/O electronics and travel to Fermilab or CERN testbeam

Conferences

Publication

Nuclear Inst. and Methods in Physics Research, A xxx (xxxx) xxx

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

A new Transition Radiation detector based on GEM technology

F. Barbosa^a, H. Fenker^a, S. Furletov^{a,*}, Y. Furletova^a, K. Gnanvo^b, N. Liyanage^b, L. Pentchev^a, M. Posik ^c, C. Stanislav ^a, B. Surrow ^c, B. Zihlmann ^a

- a Jefferson Lab, Newport News, VA 23606, USA
- b University of Virginia, Charlottesville, VA 22904, USA
- ^c Temple University, Philadelphia, PA 19122, USA

ARTICLE INFO

Keywords: Transition Radiation Detector TRD GEM Tracking detector

ABSTRACT

Transition Radiation Detectors (TRD) have the attractive feature of separating particles by their gamma factor. Classical TRDs are based on Multi-Wire Proportional Chambers (MWPC) or straw tubes, using a Xenon based gas mixture to efficiently absorb transition radiation photons. These detectors operate well in experiments with relatively low particle multiplicity. The performance of MWPC-TRD in experiments with luminosity of order 10³⁴ cm²s⁻¹ and above, is significantly deteriorated due to the high particle multiplicity and channel occupancy. Replacing MWPC or straw tubes with a high granularity Micro Pattern Gas Detectors (MPGD) like Gas Electron Multipliers (GEMs), could improve the performance of the TRD. In addition, GEM technology allows one to combine a tracker with TRD identification (GEM-TRD/T). This report presents a new TRD development based on GEM technology for the future Electron Ion Collider (EIC). The first beam test was performed at Jefferson Lab (Hall-D) using 3-6 GeV electrons. A GEM-TRD/T module has been exposed to electrons with and without a fiber radiator. First results of test beam measurements and comparison with Geant4 Monte Carlo are presented in this article.

Summary

- Electron identification is very important for EIC physics. Due to a large hadron background expected in the forward (Hadron-endcap) region, a high granularity tracker combined with TRD functionality could provide additional electron identification - GEM-TRD/T
- GEANT4 simulation of GEM-TRD has been performed
- First test beam measurement has been performed, data has been analyzed and published!
- Looking forward to a collaboration with other eRD consortiums!

Thank you!

Backup